Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gene order in rosid phylogeny, inferred from pairwise syntenies among extant genomes.

Identifieur interne : 002A70 ( Main/Exploration ); précédent : 002A69; suivant : 002A71

Gene order in rosid phylogeny, inferred from pairwise syntenies among extant genomes.

Auteurs : Chunfang Zheng [Canada] ; David Sankoff

Source :

RBID : pubmed:22759433

Descripteurs français

English descriptors

Abstract

BACKGROUND

Ancestral gene order reconstruction for flowering plants has lagged behind developments in yeasts, insects and higher animals, because of the recency of widespread plant genome sequencing, sequencers' embargoes on public data use, paralogies due to whole genome duplication (WGD) and fractionation of undeleted duplicates, extensive paralogy from other sources, and the computational cost of existing methods.

RESULTS

We address these problems, using the gene order of four core eudicot genomes (cacao, castor bean, papaya and grapevine) that have escaped any recent WGD events, and two others (poplar and cucumber) that descend from independent WGDs, in inferring the ancestral gene order of the rosid clade and those of its main subgroups, the fabids and malvids. We improve and adapt techniques including the OMG method for extracting large, paralogy-free, multiple orthologies from conflated pairwise synteny data among the six genomes and the PATHGROUPS approach for ancestral gene order reconstruction in a given phylogeny, where some genomes may be descendants of WGD events. We use the gene order evidence to evaluate the hypothesis that the order Malpighiales belongs to the malvids rather than as traditionally assigned to the fabids.

CONCLUSIONS

Gene orders of ancestral eudicot species, involving 10,000 or more genes can be reconstructed in an efficient, parsimonious and consistent way, despite paralogies due to WGD and other processes. Pairwise genomic syntenies provide appropriate input to a parameter-free procedure of multiple ortholog identification followed by gene-order reconstruction in solving instances of the "small phylogeny" problem.


DOI: 10.1186/1471-2105-13-S10-S9
PubMed: 22759433
PubMed Central: PMC3389459


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gene order in rosid phylogeny, inferred from pairwise syntenies among extant genomes.</title>
<author>
<name sortKey="Zheng, Chunfang" sort="Zheng, Chunfang" uniqKey="Zheng C" first="Chunfang" last="Zheng">Chunfang Zheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mathematics and Statistics, University of Ottawa, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mathematics and Statistics, University of Ottawa</wicri:regionArea>
<wicri:noRegion>University of Ottawa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sankoff, David" sort="Sankoff, David" uniqKey="Sankoff D" first="David" last="Sankoff">David Sankoff</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22759433</idno>
<idno type="pmid">22759433</idno>
<idno type="doi">10.1186/1471-2105-13-S10-S9</idno>
<idno type="pmc">PMC3389459</idno>
<idno type="wicri:Area/Main/Corpus">002970</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002970</idno>
<idno type="wicri:Area/Main/Curation">002970</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002970</idno>
<idno type="wicri:Area/Main/Exploration">002970</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gene order in rosid phylogeny, inferred from pairwise syntenies among extant genomes.</title>
<author>
<name sortKey="Zheng, Chunfang" sort="Zheng, Chunfang" uniqKey="Zheng C" first="Chunfang" last="Zheng">Chunfang Zheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mathematics and Statistics, University of Ottawa, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mathematics and Statistics, University of Ottawa</wicri:regionArea>
<wicri:noRegion>University of Ottawa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sankoff, David" sort="Sankoff, David" uniqKey="Sankoff D" first="David" last="Sankoff">David Sankoff</name>
</author>
</analytic>
<series>
<title level="j">BMC bioinformatics</title>
<idno type="eISSN">1471-2105</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Computational Biology (methods)</term>
<term>DNA, Plant (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Order (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Genomics (methods)</term>
<term>Magnoliopsida (classification)</term>
<term>Magnoliopsida (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Sequence Analysis, DNA (methods)</term>
<term>Software (MeSH)</term>
<term>Synteny (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Analyse de séquence d'ADN (méthodes)</term>
<term>Biologie informatique (méthodes)</term>
<term>Génome végétal (MeSH)</term>
<term>Génomique (méthodes)</term>
<term>Logiciel (MeSH)</term>
<term>Magnoliopsida (classification)</term>
<term>Magnoliopsida (génétique)</term>
<term>Ordre des gènes (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Synténie (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Magnoliopsida</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Magnoliopsida</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Magnoliopsida</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
<term>Genomics</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Biologie informatique</term>
<term>Génomique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Evolution, Molecular</term>
<term>Gene Order</term>
<term>Genome, Plant</term>
<term>Phylogeny</term>
<term>Software</term>
<term>Synteny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génome végétal</term>
<term>Logiciel</term>
<term>Ordre des gènes</term>
<term>Phylogenèse</term>
<term>Synténie</term>
<term>Séquence nucléotidique</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Ancestral gene order reconstruction for flowering plants has lagged behind developments in yeasts, insects and higher animals, because of the recency of widespread plant genome sequencing, sequencers' embargoes on public data use, paralogies due to whole genome duplication (WGD) and fractionation of undeleted duplicates, extensive paralogy from other sources, and the computational cost of existing methods.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We address these problems, using the gene order of four core eudicot genomes (cacao, castor bean, papaya and grapevine) that have escaped any recent WGD events, and two others (poplar and cucumber) that descend from independent WGDs, in inferring the ancestral gene order of the rosid clade and those of its main subgroups, the fabids and malvids. We improve and adapt techniques including the OMG method for extracting large, paralogy-free, multiple orthologies from conflated pairwise synteny data among the six genomes and the PATHGROUPS approach for ancestral gene order reconstruction in a given phylogeny, where some genomes may be descendants of WGD events. We use the gene order evidence to evaluate the hypothesis that the order Malpighiales belongs to the malvids rather than as traditionally assigned to the fabids.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Gene orders of ancestral eudicot species, involving 10,000 or more genes can be reconstructed in an efficient, parsimonious and consistent way, despite paralogies due to WGD and other processes. Pairwise genomic syntenies provide appropriate input to a parameter-free procedure of multiple ortholog identification followed by gene-order reconstruction in solving instances of the "small phylogeny" problem.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">22759433</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2105</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13 Suppl 10</Volume>
<PubDate>
<Year>2012</Year>
<Month>Jun</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>BMC bioinformatics</Title>
<ISOAbbreviation>BMC Bioinformatics</ISOAbbreviation>
</Journal>
<ArticleTitle>Gene order in rosid phylogeny, inferred from pairwise syntenies among extant genomes.</ArticleTitle>
<Pagination>
<MedlinePgn>S9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2105-13-S10-S9</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Ancestral gene order reconstruction for flowering plants has lagged behind developments in yeasts, insects and higher animals, because of the recency of widespread plant genome sequencing, sequencers' embargoes on public data use, paralogies due to whole genome duplication (WGD) and fractionation of undeleted duplicates, extensive paralogy from other sources, and the computational cost of existing methods.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We address these problems, using the gene order of four core eudicot genomes (cacao, castor bean, papaya and grapevine) that have escaped any recent WGD events, and two others (poplar and cucumber) that descend from independent WGDs, in inferring the ancestral gene order of the rosid clade and those of its main subgroups, the fabids and malvids. We improve and adapt techniques including the OMG method for extracting large, paralogy-free, multiple orthologies from conflated pairwise synteny data among the six genomes and the PATHGROUPS approach for ancestral gene order reconstruction in a given phylogeny, where some genomes may be descendants of WGD events. We use the gene order evidence to evaluate the hypothesis that the order Malpighiales belongs to the malvids rather than as traditionally assigned to the fabids.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Gene orders of ancestral eudicot species, involving 10,000 or more genes can be reconstructed in an efficient, parsimonious and consistent way, despite paralogies due to WGD and other processes. Pairwise genomic syntenies provide appropriate input to a parameter-free procedure of multiple ortholog identification followed by gene-order reconstruction in solving instances of the "small phylogeny" problem.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Chunfang</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Mathematics and Statistics, University of Ottawa, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sankoff</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>06</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Bioinformatics</MedlineTA>
<NlmUniqueID>100965194</NlmUniqueID>
<ISSNLinking>1471-2105</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023061" MajorTopicYN="Y">Gene Order</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019684" MajorTopicYN="N">Magnoliopsida</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="Y">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="N">Software</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026801" MajorTopicYN="N">Synteny</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22759433</ArticleId>
<ArticleId IdType="pii">1471-2105-13-S10-S9</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2105-13-S10-S9</ArticleId>
<ArticleId IdType="pmc">PMC3389459</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Bot. 2009 Jan;96(1):336-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jul 22;309(5734):613-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16040707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Dec;18(12):1944-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Dec;148(4):1772-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011;12 Suppl 1:S4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21342571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Feb;43(2):109-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21186353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Feb;53(4):661-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18269575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Apr 24;452(7190):991-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18432245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13 Suppl 1:S8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22369177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 May;5(5):e1000485</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19436716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011;12 Suppl 9:S5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22152148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Dec;16(12):1557-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16983148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2009 Dec;41(12):1275-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19881527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007;2(12):e1326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Feb;43(2):101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21186351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2006 Jun;13(5):1005-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16796547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Aug 15;21(16):3340-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15951307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2009 Aug;16(8):1071-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19689214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jul;16(7):934-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 Sep;28(9):951-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE/ACM Trans Comput Biol Bioinform. 2010 Oct-Dec;7(4):579-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20714028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jul 1;26(13):1587-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20483815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1995 Jul 1;5(7):737-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7583118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20482863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Bioinform Online. 2008 Apr 10;4:69-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19204809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Feb;166(2):935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Sankoff, David" sort="Sankoff, David" uniqKey="Sankoff D" first="David" last="Sankoff">David Sankoff</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Zheng, Chunfang" sort="Zheng, Chunfang" uniqKey="Zheng C" first="Chunfang" last="Zheng">Chunfang Zheng</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A70 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002A70 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22759433
   |texte=   Gene order in rosid phylogeny, inferred from pairwise syntenies among extant genomes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22759433" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020